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Abstract. In this work we first study in detail the formulation of the primal-dual interior-
point method for linear programming. We show that, contrary to popular belief, it cannot
be viewed as the damped Newton method applied to the Karush-Kuhn-Tucker conditions
for the logarithmic barrier function problem. Next we extend the formulation to general
nonlinear programming, and then validate this extension by demonstrating that this algo-
rithm can be implemented so that it is locally and Q-quadratically convergent under only
the standard Newton’s method assumptions. We also establish a global convergence theory

for this algorithm and include promising numerical experimentation.

Key Words. Interior-point methods, primal-dual methods, nonlinear programming, super-

linear and quadratic convergence, global convergence.



1 Introduction

Motivated by the impressive computational performance of primal-dual interior-point meth-
ods for linear programming (see for example Lustig, Marsten, and Shanno (Ref. 1)), it is
natural that researchers have directed their attention to the, generally more difficult, area
of nonlinear programming. Recently there has been considerable activity in the area of
interior-point methods for quadratic and convex programming. We shall not attempt to
list these research efforts, and restrict our attention to interior-point methods for nonconvex
programming. In the area of barrier methods we mention M. Wright (Ref. 2) and Nash
and Sofer (Ref. 3). S. Wright (Ref. 4) considers the monotone nonlinear complementar-
ity problem and Monteiro, Pang, and Wang (Ref. 5) consider the nonmonotone nonlinear
complementarity problem. S. Wright (Ref. 6) considered the linearly constrained nonlinear
programming problem. Lasdon, Yu, and Plummer (Ref. 7) considered various interior-point
method formulations for the general nonlinear programming problem. An algorithm and
corresponding theory was given by Yamashita (Ref. 8). Other work in the area of interior-
point methods for nonlinear programming include McCormick (Ref. 9), Anstreicher and Vial
(Ref. 10), Kojima, Megiddo, and Noma (Ref. 11), and Monteiro and Wright (Ref. 12).

The primary objective of this paper is to carry over from linear programming a viable
formulation of an interior-point method for the general nonlinear programming problem.
In order to accomplish this objective, we first study in extensive detail the formulation of
the highly successful Kojima-Mizuno-Yoshise (Ref. 13) primal-dual interior-point method for
linear programming. It has been our basic perception that the fundamental ingredient in this
formulation is the perturbed Karush-Kuhn-Tucker conditions and the relationship between
these conditions and logarithmic barrier function method has not been clearly delineated.
Hence Sections 2-4 are devoted to this concern. Of particular interest in this context is
Proposition 2.3 which shows that Newton’s method applied to the Karush-Kuhn-Tucker
conditions for the logarithmic barrier function formulation of the primal linear program
and Newton’s method applied to the perturbed Karush-Kuhn-Tucker conditions (i.e. the
Kojima-Mizuno- Yoshise primal-dual method) never coincide.

In Section 4 we state what we consider to be a basic formulation of an interior-point
method for the general nonlinear programming problem. The viability of this formulation
is reinforced by the local theory developed in Section 5. Here we demonstrate that local,
superlinear, and quadratic convergence can all be obtained for the interior-point method,

under exactly the conditions needed for the standard Newton’s method theory. The global



convergence theory is the subject of Section 6. In Section 7 we present some preliminary
numerical experimentation using the 2-norm of the residual as our merit function. Finally
in Section 8 we give some concluding remarks.

The choice of merit function for interior-point methods is not a focus of the current
research. Such activity is of importance and merits further investigation. Qur globalization
theory conveniently and effectively uses the 2-norm of the residual as merit function. At the
very least it can be viewed as a demonstration of the viability of such theory for general

interior-point methods.

2 Interpretation of the LP Formulation

Consider the primal linear program in the standard form

min Iz (1a)
st. Az =10 (1b)
x>0 (1c)

where ¢,z € R"*, b € R™, and A € R™*". The dual linear program can be written

max by (2a)
st. ATy+z=c¢ (2b)
220 (2¢)

and z € R" is called the vector of dual slack variables.

Basic Assumption: The matrix A has full rank.

As is done in this area, we use X to denote the diagonal matrix with diagonal z and
employ analogous notation for other quantities. Also e is a vector of all ones whose dimension
will vary with the context.

A point z € R" is said to be strictly feasible for problem (1) if it is both feasible and
positive. A point z € R" is said to be feasible for problem (2) if there exists y € R™ such
that (y, z) is feasible for problem (2). Moreover, z (or (y, z)) is said to be strictly feasible
(for problem (2)) if it is feasible and z is positive. A pair (z, z) is said to be on the central
path (at p > 0) if z;2; = p for all ¢, and z is feasible for problem (1), and z is feasible for
problem (2). We also say that « is on the central path (at g > 0) if (z,uX"'e) is on the
central path, i.e., if uX e is feasible for problem (2).

4



The first-order or Karush-Kuhn-Tucker (KKT) optimality conditions for problem (1) are

Az - b
F(z,y,2)= | ATy+z—c | =0, (z,2)>0. (3)
XZe

By the perturbed KKT conditions for problem (1) we mean

Az — b
Fyz,y,2)=| ATy+2z—¢c | =0, (z,2)>0, p>0. (4)
XZe — pe

Observe that the perturbation is made only to the complementarity equation. Fiacco
and McCormick (Ref. 14) were probably the first to consider the perturbed KKT conditions.
They did so in the context of the general inequality constrained nonlinear programming prob-
lem. They made several key observations including the fact that the sufficiency conditions
for the unconstrained minimization of the logarithmic barrier function were implied locally
by the perturbed KKT conditions and the standard second-order sufficiency conditions.

In 1987 Kojima, Mizuno, and Yoshise (Ref. 13) proposed the now celebrated primal-dual
interior-point method for linear programming. In essence, their algorithm is damped New-
ton applied to the perturbed KKT conditions (4). These authors state that their algorithm
is based on Megiddo’s (Ref. 15) work concerning the classical logarithmic barrier function
method. This pioneering work of Kojima, Mizuno, and Yoshise has motivated considerable
research activity in the general area of primal-dual interior-point methods for linear pro-
gramming, quadratic programming, convex programming, linear complementarity problems,
and some activity in general nonlinear programming. However, the relationship between the
perturbed KKT conditions and the logarithmic barrier function problem seems not to have
been well articulated and is often misstated. Therefore, we will rigorously pursue a study of
this relationship.

Our intention is to demonstrate the following. While the perturbed KKT conditions are
in an obvious sense equivalent to the KKT conditions for the logarithmic barrier function
problem, they are not the KKT conditions for this problem or for any other unconstrained or
equality constrained optimization problem. Furthermore, the primal-dual Newton interior-
point method cannot be viewed as Newton’s method applied to the KKT conditions for the
logarithmic barrier function problem; indeed these latter iterates and the former iterates

never coincide. Towards this end we begin by considering the logarithmic barrier function



problem associated with problem (1)

min Tz — p L, log(a:) (5a)

s.t. Az =b (5b)
z>0 (5¢)

for a fixed p > 0. The KKT conditions for problem (5) are

. ATy+pX-le—c
numE( o )=mz>o (6)

Proposition 2.1 The perturbed KKT conditions for problem (1) given by (4), and the KKT
conditions for the logarithmic barrier function problem (5) given by (6) are equivalent in the

sense that they have the same solutions, i.e., ﬁ‘,,(a:, y) = 0 if and only if F,(z,y,uXte) = 0.

Proof: The proof is straightforward. a

In spite of the equivalence described in Proposition 2.1, we have the following anomaly.

Proposition 2.2 The perturbed KKT conditions for problem (1), i.e., F,(z,y,2) = 0,
or any permutation of these equations, are not the KKT conditions for the logarithmic
barrier function problem (5) or any other (smooth) unconstrained or equality constrained

optimization problem.

Proof: If F,(z,y,z) = 0 were the KKT conditions for some equality constrained optimiza-

tion problem we would have that there exists a Lagrangian function L such that
VL(z,y,2) = Fu(z,y, 2).

It would then follow that
ViL(z,y,2) = Fi(z,y,2).

However V2L(z,y, z) is a Hessian matrix and is therefore symmetric. But direct calculations

show that Fj(z,y,z) or any permutations of its rows is not symmetric. This argument also

excludes unconstrained optimization problems. o
We tacitly assumed that L(z,y, z) in the proof of Proposition 2.2 was of class CZ.
Observe that the perturbed KKT conditions (4) are obtained from (6), the KKT condi-

tions for the logarithmic barrier function problem, by introducing the auxiliary variables
z=pXe
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and then expressing these nonlinear defining relations in the form
XZe = pe.

Considerably more will be said about this nonlinear transformation in Section 3. We now
demonstrate exactly how nonlinear this transformation is by showing that the equivalence
depicted in Proposition 2.1 in no way carries over to a Newton algorithmic equivalence.

Certainly, the possibility of such an equivalence is not precluded by Proposition 2.2 alone.

Proposition 2.3 Consider a triple (z,y, z) such that z is strictly feasible for problem (1) and
(y, 2) is strictly feasible for problem (2). Let (Az, Ay, Az) denote the Newton correction at
(z,y,2) obtained from the nonlinear system F,(z,y,z) = 0 given by (4). Also let (Az’, Ay’)
denote the Newton correction at (z,y) obtained from the nonlinear system F,,(a:,y) =0

given by (6). Then the following are equivalent:
(i) (Az,Ay) = (A, Ay)

(ii) Az =0

(iii) Az'=0

(iv) z is on the central path at p

Proof: The two Newton systems that we are concerned with are

ATAY —uX Az’ = —ATy—pX'e+ec (7a)
AAZ = 0 (7b)
and
ATAy+Az = 0 (8a)
AAz = 0 (8b)
ZAz + XAz = —XZe+ pe (8¢)

These two linear systems have unique solutions under the assumptions that (z,2) > 0
and the matrix A has full rank. We briefly outline a proof for (7). A proof for (8) is only

slightly more difficult. Consider the homogeneous system

rATAy — u XAz’ =0 (9a)
AAz' =0 (9b)



If we multiply the first equation of (9) by AX? and use the second equation we obtain
(AX?AT)Ay' = 0.

Moreover AX2AT is invertible under our assumptions. Hence Ay’ = 0 and therefore from

(9) Az’ = 0. This implies that our system has a unique solution.

Proof of (i) = (ii)
Solving the last equation of (8) for Az, substituting in the first, and observing that by
feasibility z = ¢ — ATy leads to

ATAy — X1 ZAz = —ATy —uX'e+ec.
Comparing the last equation with the first in (7) gives
XZAz = pAz'. (10)
From the first two equations in (8) we see that AzTAz =0, i.e.,
Az Az + ...+ Az, Az, =0. (11)

Define a subset I of {1,...,n} as follows. The index 7 € I if and only if Az; # 0. Now by

way of contradiction suppose that I is not empty. From the last equation in (8) and (10) we
have that

2z Az +;A2; =0 for 1€ 1.

Since z; > 0 and z; > 0, the last equation implies that Az; and Az; are both not zero and
are of opposite sign. However, this contradicts (11). This is the contradiction that we were

searching for and we may now conclude that I is empty. Hence Az = 0 and we have shown
that (i) = (ii).

Proof of (ii) = (iii)
Suppose that Az = 0. Then from the first and third equation in (8) we see that

ATAy =z — pX'e.

Hence (0, Ay) also solves (7).



Proof of (iii) = (iv)
If Az’ =0, then from the first equation in (7)

AT(y+ Ay )+ pXle—c=0.

Therefore X ~'e is strictly feasible for problem (2). This says that z is on the central path
at u.

Proof of (iv) = (i)

Suppose that z is on the central path. This means that X e is feasible for problem (2),
i.e., there exists § such that (§, uX'e) is feasible for problem (2). It follows that (0,7 — y)
solves (7). Also (0,5 — y,uX e — z) solves (8). Consequently (Az’,Ay’) = (Az,Ay) and
we have established that (iv) = (i), and finally the proposition. 0

Remark 2.1 Proposition 2.3 is extremely restrictive. It is incorrect to interpret it as saying
that the two Newton iterates agree only if the current z is on the central path. It says that
these iterates agree if and only if there is no movement in z. This characterizes the redundant
situation when z is on the central path at y and we are trying to find an z which is on the
central path at u. If z is on the central path at g and we are trying to find a point on the
central path at 4 # p, then the two Newton iterates will not generate (Az, Ay) = (Az’, Ay’).

Simply stated, the two Newton iterates never coincide.

3 Interpretation of the Perturbed KKT Conditions

There is a philosophical parallel between the modification of the penalty function method
that leads to the multiplier method and the modification of the KKT conditions for the
logarithmic barrier function problem that leads to the perturbed KKT conditions. The
similarity is that both modifications introduce an auxiliary variable to serve as approximation
to the multiplier vector and use this as a vehicle for removing inherent ill-conditioning from
the formulation. However, the roles that the two auxiliary variables play in the removal of
inherent ill-conditioning are quite different. We believe that this parallel adds prospective
to the role of the perturbed KKT conditions and therefore pursue it in some detail. The
following comments are an attempt to shed understanding on the perturbed KK T conditions
and are not intended to be viewed as mathematical theory.

For the sake of simplicity our constrained problems will have only one constraint. And

for the sake of illustration the multiplier associated with this constraint will be nonzero at
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the solution. The amount of smoothness required is not an issue and all functions will be as

smooth as the context requires.

Consider the equality constrained optimization problem.

min  f(z) (12a)
s.t. h(z)=0 (12b)

where f,h: R® — R. The KKT conditions for problem (12) are

Vf(z) + AVh(z) =0, (13a)
h(z) = 0. (13b)

The £;-penalty function associated with problem (12) is

P(zip) = f(z) + £h(z)"h(2).
The gradient of P is given by
VP(2;0) = Vf(z) + ph(z) Vh(z) (14
and the Hessian of P is given by
V2P(z;p) = V2f(z) + ph(z)V2h(z) + pVh(z)Vh(z)T.
The penalty function method consists of the generation of the sequence {x} defined by
zx = arg min P(z; px).

Suppose that zx — x*, a solution of (12), and let A* be the associated multiplier. Then
we must have pyh(zi) — A*. Since h(zx) — 0, and we are assuming that A* # 0, necessarily
pr — +oo. However as p — +oo the conditioning of the Hessian matrix V2P(zy; px)
becomes arbitrarily bad. The problem here is that we are asking too much from the penalty
parameter p. We are asking it to contribute to good global behavior by penalizing constraint
violation and we are asking it to contribute to good local behavior by forcing prh(z;) to
approximate the multiplier. Hestenes (Ref. 16) in 1969 proposed a way of circumventing
the conditioning deficiency. He introduced an auxiliary variable A and replaced ph(z) in
(14) with XA + ph(z). This modification effectively converts the penalty function into the

augmented Lagrangian. The role of the auxiliary variable ) estimating the multiplier was
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relegated to that of parameter in that Ay was held fixed during a minimization phase of
the augmented Lagrangian for the determination of z; and then updated according to the
formula Apyy = Ax+prh(zi). In this way the role of pyh(z1) is no longer one of estimating the
multiplier, but one of estimating the correction to the multiplier. Hence it is most appropriate
for prh(xr) — 0 and the requirement that py — +00 is no longer necessary. The multiplier
method has enjoyed considerable success in the computational sciences marketplace.

Now, consider the inequality constrained optimization problem

min  f(z) (15a)
s.t. g(z)>0 (15b)

where f,g: R® — R. The KKT conditions for this problem are

Vf(z)—2Vg(z) =0 (16a)
zg(z) =0 (16b)

o(z) > 0 (160)

2> 0. (16d)

The logarithmic barrier function associated with problem (15) is

B(z;p) = f(z) — p log(g(z)), #>0.
The gradient of B is given by

VB(z;p) = Vf(z)— ;(%Vg(w);

and the Hessian of B is given by

V2B(z; p) = V2 f(z) - ﬁvzg(z) + #w(wwg(zf.

The logarithmic barrier function method consists of generating a sequence of iterates

{zr} as solutions of the essentially unconstrained problem

min  B(z; pi) (17a)
s.t. g(z) > 0. (17b)

Suppose that the constraint g(z) is binding at a solution z* of problem (15). As before
we see that convergence of {zx} to z* requires that pi/g(zx) — 2*, where z* is the mul-

tiplier associated with the solution z*. Since pi/g(zx) — 2* and g(zx) — 0 we see that
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tk/9(zk)* = +oo and the Hessian of the logarithmic barrier function becomes arbitrarily
badly conditioned. As in the case of the penalty function method we are asking the penalty
parameter sequence (barrier parameter sequence in this case) to do too much and the price
once again is inherent ill-conditioning. Now introduce the auxiliary variable z = u/g(z) and
write this defining relationship in the benign form zg(z) = g, so that differentiation will not
create ill-conditioning.

In this fashion the KKT conditions for the logarithmic barrier function problem (17);
namely

V(z) — (u/9(z))Vg(z) =0
g(z) >0
are transformed into the perturbed KKT conditions
V1(@) - #9g(s) =0
zg(z) = p
9(z) >0
as proposed and discussed in Fiacco and McCormick (Ref. 14).

We now summarize. In the penalty function method the quantity ph(z) must approximate
the multiplier, necessitating py — +oco. Hence the derivative of ph(z) becomes arbitrarily
large leading to arbitrarily bad conditioning of the Hessian matrix. On the other hand in
the logarithmic barrier function method the quantity p/g(z) must approximate the multi-
plier. Hence p cannot go to zero too fast and the derivative of u/g(z) becomes arbitrarily
large leading to arbitrarily bad conditioning of the Hessian matrix. In the former case the
difficulty arises from the fact that p — +o0o. The introduction of the auxiliary variable A
in the multiplier method allows one to remove this requirement; hence the removal of ill-
conditioning. In the latter case the difficulty arises from the differentiation of the functional
form p/g(x). The introduction of the auxiliary variable z allows one to change the func-
tional form so that differentiation no longer leads to ill-conditioning. Hence, while there is
certainly a philosophical similarity between the two approaches, there is no doubt that the
latter is more satisfying and mathematically more elegant. While this transformation seems
rather straightforward, we stress that it leads to significant changes, i.e. the removal of
ill-conditioning and the effect of Proposition 2.3. The main point of the current discussion is
to focus on the similarity between the multiplier methods as a vehicle for removing inherent
ill-conditioning from the penalty function method and the perturbed KKT conditions as a
vehicle for removing inherent ill-conditioning from the logarithmic barrier function problem.

The extent to which ill-conditioning is reflected in computation is not a discussion issue here.

12



It is perhaps of interest to point out that the auxiliary variable z estimating the multi-
plier can be introduced in a logical fashion from a logarithmic barrier function formulation.

Towards this end consider the slack variable form of problem (15)

min f(z) (18a)
st. g(z)—s=0 (18b)
82>0. (18¢c)

The KKT conditions for this problem are

Vf(z) —2Vg(z) =0 (19a)
z—w=0 (19b)
g(z)—s=0 (19¢)

ws =0 (19d)

(w,s) > 0. (19e)

The system (19) is equivalent, and Newton algorithmically equivalent, to the system

Vf(z) —2Vg(z) =0 (20a)
g(z)—s=0 (20Db)

zs =10 (20¢)

(s,2) > 0. (20d)

The logarithmic barrier function problem for (18) is

min  f(z) — p log(s) (21a)
st. g(z)—s=0 (21b)
(s >0). (2j_lc)
The KKT conditions for (21) are
Vf(z)—2Vg(z) =0 (22a)
s~ (ufs) =0 (22b)
g(z)—s=0 (22¢)
s>0 (22d)
220 (22€)
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By writing z — u/s = 0 as sz = p in (22) we arrive at the perturbed version of the KKT
conditions (20). Once more we stress that such a transformation gives an equivalent problem,
removes inherent ill-conditioning, but does not preserve Newton algorithmic equivalence (see
Proposition 2.3). What we have witnessed here is the following. The pure logarithmic barrier
function method deals with an unconstrained problem. Hence there are no multipliers in
the formulation. However, if we first add nonnegativity slack variables, then the logarithmic
barrier function problem is an equality constrained problem and therefore the corresponding
first-order conditions involve multipliers.

We now briefly motivate the perturbed KKT conditions in a manner that has nothing
to do with the logarithmic barrier function. Consider the complementarity equation for
problem (1)

XZe=0.

In any Newton’s method formulation we deal with linearized complementarity
ZAz + XAz = —XZe. (23)

Linearized complementarity leads to several remarkable algorithmic properties. This was
observed by Tapia (Ref. 17) in 1980 for the general nonlinear programming problem and was
developed and expounded by El-Bakry, Tapia, and Zhang (Ref. 18) for the application of the
primal-dual interior-point methods to linear programming. In spite of its local strengths,
globally, linearized complementarity has a serious flaw. It forces iterates to stick to the
boundary of the feasible region once they approach that boundary. That is, if a component
[zx]; of a current iterate becomes zero and [z;); > 0, then from the linearized complemen-
tarity equation (23) we see that [z;); = 0 for all [ > k, i.e., this component will remain
zero in all future iterations. The analogous situation is true for the z variable. Such an
undesirable attribute clearly precludes the global convergence of the algorithm. An obvious
correction is to modify the Newton formulation so that zero variables can become nonzero in
subsequent iterations. This can be accomplished by replacing the complementarity equation
X Ze = 0 with perturbed complementarity X Ze = pe (p > 0). Of course this is exactly the
introduction of the notion of adherence to the central path. It is known that such adherence
tends to keep the iterates away from the boundary and promotes the global convergence of
the Newton interior-point method. It is this central path interpretation that we feel best

motivates the perturbed KKT conditions.
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4 Nonlinear Programming Formulation

In this section we formulate the primal-dual Newton interior-point method for the general
nonlinear programming problem. Our approach will be to consider damped Newton applied
to the perturbed KKT conditions. In order to fully imitate the formulation used in the linear
programming case we will transform inequalities into equalities by adjoining nonnegative
slack variables.

Consider the general nonlinear programming problem

min  f(z) (24a)
st. h(z)=0 (24b)
g(z) >0 (24¢)

where f : R* - R, h : R - R™ (m < n), and g : R® — R?. The Lagrangian associated
with problem (24) is

L(z,y,2) = f(z) + y"h(z) — 2" g(2).
If z is feasible for problem (24), then we let B(x) denote the set of indices of binding inequality

constraints at z, i.e.,
B(z)={i:9i(z)=0,i=1,...,p}.
The KKT conditions for problem (24) are

V.L(z,y,z) =0 (25a)
h(z) =0 (25b)

g(z) 20 (25¢)
Zg(z)=0 (25d)
220, (25€)

where V. L(z,y,z) = Vf(z) + Vh(z)y — Vg(z)=.

The standard Newton’s method assumptions for problem (24) are

(A1) Existence. There exists (z*,y", 2*), solution to problem (24) and associated multipli-
ers, satisfying the KKT conditions (25).

(A2) Smoothness. The Hessian matrices V2f(z), V2h;(z), V2g;(z) for all ¢ exist and are

locally Lipschitz continuous at z*.
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(A3) Regularity. The set {Vhy(z*),...,Vhy,(z*)} U {Vgi(z*) : i € B(z*)} is linearly inde-
pendent.

(A4) Second-order Sufficiency. For all n # 0 satisfying Vh;(z*)Tp =0, i = 1,...,m and
Vgi(z*)Tn = 0, i € B(z*), we have nTV,2L(z*)p > 0.

(AS5) Strict Complementarity. For all 4, 2} + g;(z*) > 0.
The KKT conditions (25) can be written in slack variable form as

V.L(z,y,2)
h(z)
g(z)—s
ZSe

F(z,y,s,2) = =0, (s,z)>0. (26)

The following proposition is fundamental to our work

Proposition 4.1 Let conditions (A1) and (A2) hold. Also let s* = g(z*). The following

statements are equivalent:
(i) Conditions (A3)-(A5) also hold.
(ii) The Jacobian matrix F'(z*,y*,s*, 2*) of F(z,y,s, 2) in (26) is nonsingular.

Proof: Such an equivalence is reasonably well-known for the equality constrained optimiza-

tion problem. Hence we base our proof on that equivalence. To begin with observe that

ViL. Vh(z*) —-Vg(z*) 0
Vh( 9T 0 0
Vg(z)T 0 0 |
0 0 S* z*

F'(z*,y*, s*2*) = , (27)

where V2L, = V2L(y*,z*,2*). Consider the equality constrained optimization problem

min f(x)
s.t. h(z)=0
gi(z) =0, i€B(z").

Observe that the regularity condition (A3) is regularity for this problem and the second-

order sufficiency condition (A4) is second-order sufficiency for this problem. Hence from the
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theory of equality constrained optimization we see that (A3) and (A4) are equivalent to the

nonsingularity of the matrix

ViL. Vh(z*) —Vg(z*)
F"(m*,y*,s*,z‘) = | Vh(z*)T 0 0 ,
Vi(z*)T 0 0

where V§(z*) is the matrix whose columns are {Vg;(z*) : + € B(z*)}. It is not difficult
to see that the nonsingularity of (27) is equivalent to strict complementarity (A5) and the
nonsingularity of ﬁ"(z*, y*,8%,2%) . O

We loose a small amount of flexibility by adding slack variables to the KKT conditions
(25) and then working with the resulting system (26), instead of adding slack variables
directly to the optimization problem (24) and then working with the resulting KKT condi-
tions. This small observation is quite subtle; but will play a role in the formulation of our
interior-point method. Hence we now pursue it in some detail.

Consider the following equivalent slack variable form of problem (24)

min f(z) (28a)
s.t.  h(z)= (28b)
o)~ s = (250)
s>0. (28d)

The KKT conditions for problem (28) are

Vf(z)+ Vh(z)y — Vg(z)w =0 (29a)
wez=0 (29b)

h(z) =0 (29¢)

g(z)—s=0 (29d)

ZSe=0 (29€)

(s,2) > 0. (29f)

The equation w — z = 0 in (29) says that at the solution the multipliers associated with
the equality constraints g(z) — s = 0 are the same as the multipliers corresponding to the
inequality constraints s > 0. Moreover, due to the linearity of this equation, the Newton

corrections Aw and Az will also be the same. However the damped Newton step w + a, Aw
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and the damped Newton step z + a,Az will be the same if and only if a,, = @, (assuming
Aw and Az are not both zero). We have learned from numerical experimentation that there
is value in taking different steplengths for the w and z variables. Hence our interior-point

method will be based on (29). In particular we base our algorithm on the perturbed KKT

conditions
([ Vf(z)+ Vh(z)y — Vg(z)w )
w—z
Fyz,y,s,w,2) = h(z) =0, (s,w,2)>0.
g9(z) —s
\ ZSe — pe ]

Proposition 4.1 readily extends to F,(z,y,s,w, 2).

We now describe our primal-dual Newton interior-point method for the general nonlinear
optimization problem (24). At the k% iteration, let vi = (zx,yx, Sk, ws, zx). We obtain
our perturbed Newton correction Avy = (Azy, Ayx, Ask, Awg, Az;), corresponding to the

parameter p, as the solution of the perturbed Newton linear system
F,(vi)Av = —F,(vg). (30)

We allow the flexibility of choosing different steplengths for the various components of vy.
If our choice of steplengths are a,, ay, a,, a,, and a,, we construct the expanded vector of

steplengths
Op = (Qgyo oy Qgy Oy vy Oy Qlgy e ey Qlgy Oy e ey gy Ay e ey Oy ),

where the frequencies of occurances of the steplengths are n, m, p, p, and p respectively.

Now we let

Ay = diag(ow), (31)

i.e. Ay is a diagonal matrix with diagonal o*. Hence, the subsequent iterate vy, can be

written as

Vks1 = Uk + ApAv.

Now we are ready to state our generic primal-dual Newton interior-point method for the
general nonlinear optimization problem (24). For global convergence consideration a merit
function ¢(v), that measures the progress towards the solution v* = (z*,y*, s*, s*, z*), should

be used.
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Algorithm 1 (Interior-Point Algorithm)

Step 0 Let vo = (o, Yo, So, Wo, z0) be an initial point satisfying (so,we, 20) > 0.
For £ =0,1,2,...,do

Step 1 Test for convergence.
Step 2 Choose u; > 0.
Step 3 Solve the linear system (30) for Av = (Az, Ay, As, Aw, Az).

Step 4 Compute the quantities

A -1

s = n((Sr)-10s5.=1)
A _ —1

Qw = Sin((We)-1Bus,—1)
A -1

= mm((Zo)- 1Az -1)

Step 5 Choose 7 € (0,1] and a, € (0,1] satisfying
$(vi + ArAv) < (i) + BV d(vi)T Avg, (32)

for some fixed 3 € (0, 1), where Ay is described in (31) with the steplength choices

a, = min(1, 74é,)
oy = min(1, Txéy,)

a, = min(1, 7, d,).

Step 6 Set vii1 = vg + AxAvg and k — k + 1. Go to Step 1.

If one prefers equal steplengths for the various component functions, then there is no
value in carrying w as a separate variable and it should be set equal to z. Moreover, in this

case the obvious choice for the steplength for the s and z components is
min(1, 74 &y, TGy ). (33)
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It is a straightforward matter to employ backtracking on (33) in order to satisfy the
sufficient decrease condition (32). Our local analysis will be given with the steplength choice
(33). A reasonable modification of this approach would be to choose o} via backtracking and
then choose a,, the steplength for the (z,y)—variables, such that a, > a) and the sufficient

decrease condition (32) is still maintained.

5 Local Convergence Properties

In this section we will demonstrate that our perturbed and damped interior-point Newton’s
method can be implemented so that the highly desirable properties of the standard Newton’s
method are retained. We find this demonstration particularly satisfying since it adds credi-
bility to our choice of formulation. The major issue here concerning fast convergence is the
same as it was in the linear programming application. There it was dealt with successfully
by Zhang, Tapia, and Dennis (Ref. 19), and Zhang and Tapia (Ref. 20). This issue is — Is it
possible to choose the algorithmic parameters 7 (percentage of movement to the boundary)
and pi (perturbation) in such a way that the perturbed and damped step approaches the
Newton step sufficiently fast so that quadratic convergence will be retained ?. We stress the
point that the choice o, = 1 and 7, = 1 do not necessarily imply that the steplength o is 1.

We begin by giving a formal definition of the perturbed damped Newton’s method and
then deriving some facts that will be useful concerning the convergence rate of the perturbed

damped Newton’s method. Towards this end consider the general nonlinear equation problem
F(z) =0, (34)

where F : R® — R". Recall that the standard Newton’s method assumptions for problem
(34) are

(B1) There exists z* € R" such that F(z*) = 0.
(B2) The Jacobian matrix F'(z*) is nonsingular.
(B3) The Jacobian operator F” is locally Lipschitz continuous at z*.

By the perturbed damped Newton’s method for problem (34) we mean the construction

of the iteration sequence
Trt1 = Tk — akF'(xk)'l[F(zk) - /Lkﬁ], k = 0, 1, 2, e (35)

where 0 < o <1, px > 0, and p is a fixed vector in R™.
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Proposition 5.1 Consider a sequence {z;} generated by the perturbed damped Newton’s
method (35) for problem (34). Let zx — z* such that F(z*) = 0 and the standard assump-
tions (B1)-(B3) hold at z*.

(i) If ax — 1 and pi = o(||F(zk)||), then the sequence {z;} converges to z* Q-superlinearly.

(ii) If ax = 1+ O(]|F(z«)||) and px = O(||F(zx)||*), then the sequence {zx} converges to z*
Q-quadratically.

Proof: Standard Newton’s method analysis arguments (see Dennis and Schnabel (Ref. 21)
for example) can be used to show that

lexsr — 2| = (1 = aw)llee — 27| + pel | F'(ze) 7 Bl + O(llzi — z™|[*), (36)

and
IF (@)l = O(llzx — z7|) (37)
for all z; sufficiently near z*. The proof now follows by considering (36) and (37). a

We are now ready to establish convergence rate results for our perturbed damped interior-
point Newton’s method for problem (34), i.e. Algorithm 1. First we introduce some notation
and make several observations. We let w = z and choose the steplength o; given by (33).
Our algorithm is the perturbed damped Newton’s method applied to the nonlinear system
F(z,y,s,z) =0 given in (29). Observe that the conditions (A1)-(A5) imply the conditions
(B1)-(B3) according to Proposition 4.1. In the following presentation it will be convenient

to write

px = o min(SyZye)

and state our conditions in terms of 0.

Theorem 5.1 (Convergence Rate) Consider a sequence {v;} generated by Algorithm 1.
Assume that {v;} converges to a solution v* such that the standard assumptions (A1)-(A5)
for problem (24) hold at v*.

(i) f 7« — 1 and o4 — 0, then the sequence {v;} converges to v* Q-superlinearly.

(ii)) If o = 1 4+ O(||F(vi)||) and ox = O(}|F(vi)||), then the sequence {v;} converges to v*
Q-quadratically.
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Proof: The proof of the theorem will follow directly from Proposition 5.1 once we establish

that a4 satisfies a relationship of the form

aj = min(1, 7% + O(ox) + O(||F(vi)|1)). (38)
We now turn our attention to this task. Since Av = —F'(vi)” (F(vx) — pxé), where the
vector € = (0,...,0,1,...,1) with p ones, we see that
Asell = O(IIF(ve)ll) + O(ue), (39)
and
[Azi]| = O F (vi)ll) + O () (40)

Hence both Asi and Az, converge to zero.

From linearized perturbed complementarity we have
Sy 'As + Zi Az = —e + kak_IZk_le. (41)

It follows from strict complementarity, (39), (40), and (41) that if ¢ is an index such that
s;* =0, then

Asgli
Bl 1 1 o(IF@e)l) + O(o),
[sk)i
while if it is an index such that [s*}; > 0, then
[Ask],- 0.
[sk)i

Similar relationships hold for the z-variables. Hence

min(Sx~'As, 2, Az) = —1 4 O()|F(v)|]) + O(o%).

So

ar = min(l, 74 /(1 + O(||F (v )l[) + O(ow)))- (42)
However, if o} satisfies a relationship of the form (42), then it satisfies a relationship of the
form (38). 0

Theorem 5.2 (Local Convergence) Consider problem (24) and a solution v* such that
the standard assumptions (A1)-(A5) hold at v*. Given 7 € (0, 1) there exists a neighborhood
D of v* and a constant & > 0 such that for any vo € D and any choice of algorithmic
parameters 73 € [7,1] and ox € (0,5], Algorithm 1 is well defined and the iteration sequence

converges Q-linearly to v*.
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Proof: We first observe that the estimates constructed in the proof of Proposition 5.1 and
Theorem 5.1 above do not depend on the fact that we assumed convergence of the iteration
sequence. Clearly they depend strongly on the standard assumptions. By using (36), (37),
and (38) we can derive

loker = o%lf < (1 = 7 + O(ow) + O([lv = v*[)llvi — v]|. (43)
In (43) we used the fact that
#r = axO(|| F(vi)ll) = oO(||ve — v7|)).

The proof now follows from (43). O

6 Global Convergence Theory

In this section we establish a global convergence theory for a primal-dual Newton interior-
point algorithm. The algorithm that we consider here has the same basic structure as
Algorithm 1 with a particular choice for the merit function ¢. The main result is Theorem 6.1
which states that any limit point of the sequence generated by our algorithm is a KKT point
of problem (24).

We start by recalling that the slack-variable form of the KKT conditions of problem (24)

1s

V.L(z,y,s, 2)
h
F(z,y,s,2) = (2) =0, (s,2z) 20,
g(z) —s
ZSe
which can be written as
G(x’ y’ S’ z)
F b b b E = b b Z 0,
(z,y,s,2) ( 750 ) (s,2)
where
V.L(z,y,s,z)
G(z,y,s,2) = h(z) . (44)
g(z)—s
As before we will use the following notation
v =(z,y,s, 2).
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At a current point v = (z,y,s,z) and for a chosen steplength a, the subsequent iterate is

calculated as
v(e) = (z(@),y(a), s(@), 2(a)) = (2,4, 5,2) + a(Az, Ay, As, Az),
where (Az, Ay, As, Az) is the solution of the system
F'(v)Av = —F(v) + pé. (45)

To specify the selection of a, we first introduce some quantities and functions that we

will make use of later. For a given starting point vo = (0, yo, 20, S0) With (so, 20) > 0, let

71 = min(ZoSoe)/[(20)"so/p], T2 = (20)T50/||G(v0)]|2-

Define
(@) = min(Z(a)s(a)) — yriz()"s(a)/p, (46)
and
(@) = 2(a)Ts(@) = 72| G(v(@)) Iz, (47)
where v € (0,1) is a constant. We note that the functions f*(a), ¢ = I, II, depend on the

iteration count k, though for simplicity we choose not to explicitly write out this dependency.

It is also worth noting that
(i) forv=vp and y =1, f(0) = 0 for i = I, II;
(ii) f(e) is a piecewise quadratic and f7 (a) is generally nonlinear.

It is known that if oy are chosen such that fI(a) > 0 for all a € [0, a4] at every iteration,
then (zx,sx) > 0 and

min(Z,Ske)/((zx)" sk /p] 2 171,
where v; € (0,1). This is a familiar centrality condition for interior-point methods.
Based on these observations, in choosing the steplength a; at every iteration, we will
require ay to satisfy f*(ax) >0, i=I,1I, and fI(a) > 0 for all a € [0, ax).
For : = I, I, define

a = 12[%)51{0 : f'(e’) > 0 for all o < a}, (48)

i.e., a' are either one or the smallest positive root for the functions f(a) in (0,1] (it will be

shown later that o' > 0). Since f/(a) is a piecewise quadratic, ! is easy to find.
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Our globalized algorithm is a perturbed and damped Newton method with a back-
tracking linesearch. The merit function used for linesearch is the squared £; norm of the

residual, i.e.,
$(v) = [|[F(v)|7 -
We use the notation ¢; to denote the value of the function ¢(v) evaluated at vy. Similar

notation will be used for other quantities depending on vx. Moreover, we use @x(a) to denote
¢(vr + aAv). Clearly, ¢ = ¢(0) = ¢(vi).

It is not difficult to obtain a condition under which the perturbed Newton step
Av = —-Fl"(vk)"lFﬂ(vk),
gives descent for the merit function ¢(v). The derivative of ¢x(a) at a = 0 is

(V)TAv = 2(F'(v)TF(v))"[F'(v)™(=F(v) + p&)]
= 2F()T(=F(v) + )
= 2(=IF()II} + uF(v)Te),
hence
(Vé)TAv < 0 if and only if g < ||F(v)|2/s 2.

Now we describe the globalized primal-dual Newton interior-point algorithm.

Algorithm 2 (Global Algorithm)

Step 0 Choose vy = (o, Yo, So, 20) such that (s¢,2z0) > 0, p € (0,1) and B € (0,1/2]. Set
k=0, vx-1 =1, and compute ¢o = ¢(vp). For k =0,1,2,..., do

Step 1 Test for convergence: if ¢; < €.zit, stop.

Step 2 Choose o, € (0,1) and for v = v, compute the perturbed Newton direction Awg
from (45) with
(.Sk)TZk
.
p

pe=o
Step 3 Steplength selection:
(3a) Choose 1/2 < 4 < 7k_1, compute o', i = I, II, from (48) and let

& = min(a!, o). (49)
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(3b) Let ay, = p'ayx, where t is the smallest nonnegative integer such that a; satisfies

¢r(ar) < 61(0) + arB4;(0). (50)

Step 4 Let viy1 = vk + axAvg and k — k + 1. Go to Step 1.

The question as to whether the perturbed Newton direction is a descent direction for the
merit function ¢ (for the choice of y; given in Algorithm 2) is answered in the affirmative in

the following proposition.

Proposition 6.1 The direction Avy generated by Algorithm 2 is a descent direction for the

merit function ¢(v) at vi. Moreover if condition (50) is satisfied, then
$r(o) < [1 - 20 B(1 — a%)]6x(0).
Proof: We will suppress the subscript k in the proof. Note that
VT Av = —2(¢ — uzTs).
Since u = 0275 /p and

(z"8)*/p = (I1ZSelli/v/p)* < 11ZSell; < IG5 + || ZSell? = ¢, (51)

it follows that
VT Av < —2(1 —0)¢ < 0.

So the perturbed Newton direction indeed gives descent. Moreover condition (50) can be

written
¢(a) <1 - 2aB(1 - 0)]4(0).
This proves the proposition. O

This proposition asserts also that the sequence {¢x} is monotone and non-increasing,
therefore,

dr < o for all k.

Moreover, we have global Q-linear convergence of the values of the merit function ¢ to zero
if {ax} is bounded away from zero, and oy is bounded away from from one. It is also worth

noting that the above inequality is equivalent to

1 F(vr+1)ll2

— a0 — Ok 1/2.
TZCAIP <1 =26(1 — oy)]
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One problem that may preclude global convergence is that the sequence {||Z;Ske|} con-
verges to zero, but {¢(vx)} does not. The following proposition shows that Step (3a) in

Algorithm 2 plays a key role in preventing such behavior from occurring.

Proposition 6.2 Let {vi} be generated by Algorithm 2. Then

£8(vi) < [(2e)T sk < pd(vi),
where £ = [min(1, 0.57;)/2]%.

Proof: We will again suppress the subscript k in the proof. The second inequality follows
from (51). So we only need to prove the first one.

Since ay < @y, we have f'(at) > 0,4 = I,II. From (47) and the choice v > 1/2,

1 |
2's 2 (11 Z8ellx + 0.572[|Gl2) > 5 min(L, 0.57, )| Fl,.

This completes the proof. 0
Given € > 0, let us define the set

(52)

Q(E)E{’U: e§¢(v)§¢o,M>Tl e >T2}

Tsfp =20 |G = 2

This set will play a pivotal role in establishing our global convergence theory. For this set,

the following observations are in order.
(a) Qe) is a closed set.
(b) From the construction of the algorithm, in particular, v; > 1/2,

{ve} C (0).

(c) In Q(e) where € > 0, 27s is bounded above and bounded away from zero.

(d) In Q(¢) where € > 0, all components of ZSe are bounded above and bounded away from
zero.

We will establish global convergence of the algorithm under the following assumptions.

(C1) In the set £2(0), the functions f(z), h(z), and g(x) are twice continuously differentiable
and the derivative of G(v), given by equation (44), is Lipschitz continuous with constant

L. Moreover, the columns of Vi(z) are linearly independent.
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(C2) The iteration sequence {z;} is bounded. (This can be ensured by enforcing box
constraints —M < z < M for sufficiently large M > 0).

(C3) The matrix V2L(x,y, z)+Vg(z)S~1ZVTg(z) is invertible for v in any compact subset

of (}(0) where s is bounded away from zero.

(C4) Let I be the index set {i : 1 < i < p, liminf[s;]; = 0}. Then the set of gradients
{Vhi(z), ..., Vhn(zk), Vgi(zk),i € 1%} is linearly independent for k sufficiently large.

We note that if we have g(zi) — sy — 0 in the algorithm, then Assumption (C4) is
equivalent to the linear independence of the gradients for active constraints, which is a

standard regularity assumption in constrained optimization.

Proposition 6.3 Assume that Assumption (C1) holds. Then for v € Q(e) and z in a

compact set, there exists a positive constant M such that,
lyll < My(1 +|2]]).
Proof: We have V.L(z,y,s,z) = Vf(z) + Vh(z)y — Vg(z)2z. Then by Assumption (C1),
y = [VA(z) Vh(z)] ' Vh(z)" (VoL(z,y,5,2) — Vf(z) + Vg(a)z).

This implies the proposition. o
In the remaining part of this section, we concentrate our effort on proving the following

fact: given any € > 0, as long as the iteration sequence v generated by the algorithm satisfies
v € (e), €>0,

then the step sequence {Avi} and the steplength sequence {04} are uniformly bounded

above and away from zero, respectively, in the algorithm. This fact implies the convergence
of the algorithm.

Lemma 6.1 If {v;} C Q(e), then the iteration sequence {v;} is bounded above and in

addition {(z,sx)} is component-wise bounded away from zero.

Proof: From Assumption (C2), {zi} is bounded. By Proposition 6.3, it suffices to prove
that {(zt,st)} is bounded above and component-wise away from zero.
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The boundedness of {zx} in Q(€) implies that {||g(z)||} is bounded above, say, by
M; > 0. Therefore, if follows from the definition of (52) and the fact that {||F(vi)||2} is

monotonically decreasing that

lIsell < llg(zx) — sll + Nlg(zi)ll < /o + Mo

This proves that {s;} is bounded above.

Since in ()(e), the sequences {[zi]i[sk];}, i = 1,2,...,p, are all bounded away from zero.
Hence all components of {z;} are bounded away from zero because {s;} is bounded above.
Moreover, {sx} will be bounded away from zero if {2} is bounded above. This will be proved
next by contradiction.

Suppose that, if necessary considering a subsequence, [2x]; — oo for ¢ in some index set.
Then the boundedness of {[z];[si);} implies that liminf [sk]i = 0 and the corresponding index
set is I). Since ||V f(zi)+ Vh(zi)y—Vg(zs)2|| is bounded in Q(e), so is IVh(ze)y—Vg(zi)z||
because ||V f(z)|| is bounded. Since ||z|| — oo,

[VA(zr)y — Vg(zx)2|
Nl (e, 26

Let w* be any limit point of {(y, zx)/||(yx, 2)||}. Clearly, |w*|| = 1, and the components of

w* corresponding to those indices for which {[z]s} < 400, i.e., i ¢ I, are zero. Let W* be

the vector consisting of the components of w* but excluding those corresponding to ¢ ¢ I?.

So ||b*|| = [lw*|| = 1. The above relation implies that at least for a subsequence of {z«},
[Vh(xk),Vg,-(a:k),i € I‘?]ﬁ)* — 0.

This, however, contradicts Assumption (C4). So {z} is bounded above and {sk} is bounded
away from zero. 0

Lemma 6.2 If {vi} C Q(¢), then {[F'(vi)]™*} is bounded.

Proof: For simplicity, we will suppress the arguments and subscripts in this proof. Rear-

ranging the order of rows and columns of F'(v), we have the following matrix.

Z S 0 o0
— T
F,(v):( A B)E I o o0 Vg

I

-BT C 0 0 0 W
0 —Vg -Vh V2L

-
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where

1l
N
i
_ N
S W
N——
I}

0 0 0 VAT
, C= .
0 Vg7 Vh VL

0 -1
Al =
(5 )

exists in {)(¢) and is uniformly bounded. Furthermore, by Assumptions (C1), (C3), and
Lemma 6.1 the matrix

From Lemma 6.1

hT
H=(BTA'B+C)= ( 0 v )

Vh V2L +Vg¢S-1ZVgT

18 invertible and || H~|| is uniformly bounded in Q(e).

A straightforward calculation shows that

A B\ [ A -ABH-BTA' _A-'BH
-BT (¢ - H-'BT A H-! ’

which is bounded since every matrix involved is bounded. This implies that (F’(v))~! is
uniformly bounded in Q(¢) and proves the lemma. a

The following corollary follows directly from Lemma 6.2.

Corollary 6.1 If {vy} C Q(c), then the sequence of search steps {Av} generated by Algo-
rithm 2 is bounded.

Now we prove that {a;} given by Step (3a) of Algorithm 2 is bounded away from zero.

Lemma 6.3 If {vi} C Q(¢) and {0} is bounded away from zero, then {ai} is bounded

away from zero.
Proof: Let us suppress the subscript k. Since @ = min(a!, '), where
a' = rg{g)i]{a (fi(e)>0forall o <a}, i=1,1I.

it suffices to show that {a‘}, i = I, II, are bounded away from zero.

From the definition of o and f/(a), af is the largest number in [0, 1] such that

z(@)si(@) —ymz(e)Ts(a)/p 20, a€0,0l], i=1,2,...,p.
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Let
m = [Az;As; — ynAzT Asl.

From the boundedness of Av (see Corollary 6.1), we have for some positive constant Mj,
ni < Ms.
A straightforward calculation shows that for a € [0,1]

zi(a)si(a) — ymz(@)Ts(a)/p
(1 — a)(zis —yn ’—:1) + (1 = yn)pa + (AzAs; — ?AzTAs)az

> (1 —9n)pa — |AzAs; - %AZTAs|a2
= (1 -vn)pa—mni?
> (1 —~vyn)pa — Mza?.

From the definition of af (see (48)), clearly,

(1 =m)p

I
a 2
- M,

Observe that 4 = os"z/p is bounded below in Q(e) for o bounded away from zero. Hence
o is bounded away from zero in Qe).
Now we show that {af'} generated by Step 2 of Algorithm 2 is bounded away from zero.

By the mean-value theorem for vector-valued functions,

G(v+aAv) =GW)+a (fol G'(v+ taAv)dt) Av

= G(v) + oG’ (v)Av+ a (fol(G'(v + taAv) — G’(v))dt) Av
=Gv)(1-a)+a (fol(G”(v + taAv) — G’(v))dt) Av.

Invoking Lipschitz continuity for the derivative of G(v) (Assumption (C1)), we obtain
IG(v + ado)|| < IG)II(1 — @) + L||Av|*®.

Using the above inequality, we have

@) = z(a)Ts(a) = 17|G(v + alrv)|

2Ts(1 — @) + 2Tsoa + (Az)TAsa?

~1(GE)I(1 - a) + L||Av||*a?)

(z7s = 1n||G()|))(1 - @)

+27soa + [(Az)TAs — yr, L|| Av|*a?
afzTso — |(A2)TAs — y73 L]} Av]|?|a].

v

v
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Since {Awvy} is uniformly bounded, there exists a constant M, > 0 such that
(A2)TAs — yrL||Av|?| < M.

Hence
fH(a) > a(sza - Mya).

This implies that

ZTSO’

M,

Since {sf 2} and {o}} are bounded away from zero in (), then {a¥} is bounded away

ol >

from zero. This completes the proof. O

Theorem 6.1 Let {vx} be generated by Algorithm 2 with €...; = 0, and {ox} C (0,1)
bounded away from zero and one. Under Assumptions (C1)-(C4), {F(vi)} converges to
zero and for any limit point v* = (z*,y*, 2%, s*) of {v;}, 2* is a KKT point of problem (24).

Proof: Note that {||F(v:)||} is monotone decreasing, ; hence convergent. By contradiction,
suppose that {||F(v;)||} does not converge to zero. Then {vi} C Q(e) for some € > 0. If for
infinitely many iterations, ax = @y, then it follows from the inequality
$(Ves1)
¢(vr)

and Lemma 6.3 that the corresponding subsequence of {@;} converges to zero Q-linearly.

S 1-— 2akﬂ(1 - O'k)

This gives a contradiction. Now assume that o < @ for k sufficiently large. Since {ax} is
bounded away from zero, then the back-tracking linesearch used in Algorithm 2 produces
V(o))" Ave  —2($(vr) — pr(2x) k)
(A l| Av]
see Ortega and Rheinboldt (Ref. 22) and Byrd and Nocedal (Ref. 23). Since {Av;} is
bounded according to Corollary 6.1,

— 0,

¢(vk) - pk(zk)Tsk — 0.

However, it follows from (51) that

é(vk) — pi(zx) sk = (1 — o%) p(vi).

Therefore, it must hold that ¢(vx) — 0 because {o;} is bounded away from one. This again
leads to a contradiction. So {||F(vi)||} must converge to zero.

Since the KKT conditions for problem (24), F(z,y,z,s) = 0 and (z,8) > 0, are satisfied
by v*, clearly z* is a KKT point. a
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7 Computational Experience

In this section we report our preliminary numerical experience with Algorithm 2. The
numerical experiments were done on a Sun 4/490 WorkStation running SunOS Operating
System Release 4.1.3 with 64 Megabytes of memory. The programs were written in MATLAB
and run under version 4.1.

We implemented Algorithm 2 with a slight simplification, i.e., we did not enforce condition
(47) in our linesearch in order to avoid possible complication caused by the nonlinear function
f%(a) in condition (47).

We chose the algorithmic parameters for Algorithm 2 as follows. In Step 2, we choose
0% = min(n, 7281 2;), where ; = 0.2 and 7, = 100. Moreover, we used 3 = 104 in condition
(50) of Step (3b), and set the back-tracking factor p to 0.5.

In our implementation, we used a finite-difference approximation to the Hessian of the
Lagrangian function. The numerical experiments were performed on a subset of the Hock
and Schittkowski’s test problems (Ref. 24 and 25). For most problems, we used the standard
starting points listed in (Ref. 24 and 25). However, for some problems, the standard starting
point are too close to the solution and we instead selected more challenging starting points.

The results of our numerical experience are summarized in Table 1. The first and the
sixth columns give the problem number as given in (Ref. 24 and 25). The n, m, and p
columns give the dimension (number of variables, not including slack variables), the number
of equality constraints and the number of inequality constraints, respectively. The Iterations
column gives the number of iteration required by Algorithm 2 to obtain a point that satisfies

the stopping criterion
|F (vie) ll2
1+ [|okll2

We summarize the results of our numerical experimentation in the following comments

< €erit = 10—8-

(i) The implemented algorithm solved all the problems tested to the given tolerance, except
for problems 13 and 23. For problem 23 we had to take different step sizes with
respect to the s-variables and z-variables in order to converge. For problem 13, where
regularity does not hold, we only obtained a small decrease in the merit function. After

100 iterations the norm of the residual was 3.21 x 1072 and ||g(z) — s||z was of order
1078,

(ii) The quadratic rate of convergence is observed in problems where second order sufficiency

is satisfied.
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(iii) In the absence of strict complementarity, the algorithm was globally convergent but
the local convergence was slow. This observation is compatible with our convergence

theory. Strict complementarity is needed only for fast local convergence.

8 Concluding Remarks

Some understanding of the relationship between the logarithmic barrier function formula-
tion and the perturbed Karush-Kuhn-Tucker conditions was presented in Sections 2-3. In
summary; the logarithmic barrier function method has an inherent flaw of ill-conditioning.
This conditioning deficiency can be circumvented by introducing an auxiliary variable and
writing the defining relationship for this auxiliary variable in a particularly nice manner
which can be viewed as perturbed complementarity. The resulting system is the perturbed
KKT conditions. This approach of deriving the perturbed KKT conditions from the KKT
conditions of the logarithmic barrier function problem involves auxiliary variables and a non-
linear transformation and is akin to Hestenes’ derivation of the multiplier method from the
penalty function method. Hence attributing algorithmic strengths resulting from the use of
the perturbed KKT conditions to the KKT conditions for the logarithmic barrier function
is inappropriate and analogous to crediting the penalty function method for the algorithmic
strengths of the multiplier method. In Section 4 we presented a formulation of a generic
line-search primal-dual interior-point method for the general nonlinear programming prob-
lem. The viability of the formulation was demonstrated in Sections 5 and 6. In Section 5, we
established the standard Newton’s method local convergence and convergence rate results
for our interior-point formulation. In Section 6, we devised a globalization strategy using the
£,-norm-residual merit function and established a global convergence theory for this strategy.
Finally, our preliminary numerical results obtained from the globalized algorithm appear to

be promising.
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Table 1: Numerical results
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